Nuprl Definition : has-interior-point

has-interior-point(k;c;a) ==  ∃x:ℕk ⟶ ℚ(rat-point-in-cube(k;x;c) ∧ rat-point-in-cube-interior(k;x;a))



Definitions occuring in Statement :  rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) rat-point-in-cube: rat-point-in-cube(k;x;c) rationals: int_seg: {i..j-} exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] int_seg: {i..j-} natural_number: $n rationals: and: P ∧ Q rat-point-in-cube: rat-point-in-cube(k;x;c) rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a)
FDL editor aliases :  has-interior-point

Latex:
has-interior-point(k;c;a)  ==
    \mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  (rat-point-in-cube(k;x;c)  \mwedge{}  rat-point-in-cube-interior(k;x;a))



Date html generated: 2020_05_20-AM-09_19_07
Last ObjectModification: 2019_11_02-PM-05_31_58

Theory : rationals


Home Index