Nuprl Definition : has-interior-point
has-interior-point(k;c;a) ==  ∃x:ℕk ⟶ ℚ. (rat-point-in-cube(k;x;c) ∧ rat-point-in-cube-interior(k;x;a))
Definitions occuring in Statement : 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a)
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions occuring in definition : 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
int_seg: {i..j-}
, 
natural_number: $n
, 
rationals: ℚ
, 
and: P ∧ Q
, 
rat-point-in-cube: rat-point-in-cube(k;x;c)
, 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a)
FDL editor aliases : 
has-interior-point
Latex:
has-interior-point(k;c;a)  ==
    \mexists{}x:\mBbbN{}k  {}\mrightarrow{}  \mBbbQ{}.  (rat-point-in-cube(k;x;c)  \mwedge{}  rat-point-in-cube-interior(k;x;a))
Date html generated:
2020_05_20-AM-09_19_07
Last ObjectModification:
2019_11_02-PM-05_31_58
Theory : rationals
Home
Index