Step
*
2
of Lemma
lower-rc-face-dimension
1. k : ℕ
2. c : ℚCube(k)
3. j : ℕk
4. dim(c j) ≠ 0
5. ↑Inhabited(c)
6. ↑Inhabited(c j)
7. ↑Inhabited(c)
8. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. Σ(f[x] | x < n) = (f[j] + Σ(if (x =z j) then 0 else f[x] fi | x < n)) ∈ ℤ supposing j < n
⊢ (dim([fst((c j))]) + Σ(if (i =z j) then 0 else dim(if (i =z j) then [fst((c i))] else c i fi ) fi | i < k))
= ((dim(c j) + Σ(if (i =z j) then 0 else dim(c i) fi | i < k)) - 1)
∈ ℤ
BY
{ ((Thin (-2) THEN Thin (-3))
THEN (Assert dim(c j) = 1 ∈ ℤ BY
(RepeatFor 2 (MoveToConcl (-2))
THEN (GenConclTerm ⌜c j⌝⋅ THENA Auto)
THEN D -2
THEN RepUR ``rat-interval-dimension inhabited-rat-interval`` 0
THEN AutoSplit))
THEN (Subst' (dim(c j) + Σ(if (i =z j) then 0 else dim(c i) fi | i < k)) - 1 ~ (dim(c j) - 1)
+ Σ(if (i =z j) then 0 else dim(c i) fi | i < k) 0
THENA Auto
)
THEN EqCDA) }
1
.....subterm..... T:t
1:n
1. k : ℕ
2. c : ℚCube(k)
3. j : ℕk
4. dim(c j) ≠ 0
5. ↑Inhabited(c j)
6. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. Σ(f[x] | x < n) = (f[j] + Σ(if (x =z j) then 0 else f[x] fi | x < n)) ∈ ℤ supposing j < n
7. dim(c j) = 1 ∈ ℤ
⊢ dim([fst((c j))]) = (dim(c j) - 1) ∈ ℤ
2
.....subterm..... T:t
2:n
1. k : ℕ
2. c : ℚCube(k)
3. j : ℕk
4. dim(c j) ≠ 0
5. ↑Inhabited(c j)
6. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. Σ(f[x] | x < n) = (f[j] + Σ(if (x =z j) then 0 else f[x] fi | x < n)) ∈ ℤ supposing j < n
7. dim(c j) = 1 ∈ ℤ
⊢ Σ(if (i =z j) then 0 else dim(if (i =z j) then [fst((c i))] else c i fi ) fi | i < k)
= Σ(if (i =z j) then 0 else dim(c i) fi | i < k)
∈ ℤ
Latex:
Latex:
1. k : \mBbbN{}
2. c : \mBbbQ{}Cube(k)
3. j : \mBbbN{}k
4. dim(c j) \mneq{} 0
5. \muparrow{}Inhabited(c)
6. \muparrow{}Inhabited(c j)
7. \muparrow{}Inhabited(c)
8. \mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}].
\mSigma{}(f[x] | x < n) = (f[j] + \mSigma{}(if (x =\msubz{} j) then 0 else f[x] fi | x < n)) supposing j < n
\mvdash{} (dim([fst((c j))])
+ \mSigma{}(if (i =\msubz{} j) then 0 else dim(if (i =\msubz{} j) then [fst((c i))] else c i fi ) fi | i < k))
= ((dim(c j) + \mSigma{}(if (i =\msubz{} j) then 0 else dim(c i) fi | i < k)) - 1)
By
Latex:
((Thin (-2) THEN Thin (-3))
THEN (Assert dim(c j) = 1 BY
(RepeatFor 2 (MoveToConcl (-2))
THEN (GenConclTerm \mkleeneopen{}c j\mkleeneclose{}\mcdot{} THENA Auto)
THEN D -2
THEN RepUR ``rat-interval-dimension inhabited-rat-interval`` 0
THEN AutoSplit))
THEN (Subst' (dim(c j) + \mSigma{}(if (i =\msubz{} j) then 0 else dim(c i) fi | i < k)) - 1 \msim{} (dim(c j) - 1)
+ \mSigma{}(if (i =\msubz{} j) then 0 else dim(c i) fi | i < k) 0
THENA Auto
)
THEN EqCDA)
Home
Index