Step
*
of Lemma
prod_sum_l_q
No Annotations
∀[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ]. ∀[u:ℚ]. ((u * Σa ≤ j < b. E[j]) = Σa ≤ j < b. u * E[j] ∈ ℚ) supposing a ≤ b
BY
{ ((ProveSpecializedLemmaWReduce rng_times_sum_l) 0 [⌜parm{i}⌝;⌜<ℚ+*>⌝]⋅ THEN Fold `qsum` 1 THEN Auto) }
Latex:
Latex:
No Annotations
\mforall{}[a,b:\mBbbZ{}].
\mforall{}[E:\{a..b\msupminus{}\} {}\mrightarrow{} \mBbbQ{}]. \mforall{}[u:\mBbbQ{}]. ((u * \mSigma{}a \mleq{} j < b. E[j]) = \mSigma{}a \mleq{} j < b. u * E[j]) supposing a \mleq{} b
By
Latex:
((ProveSpecializedLemmaWReduce rng\_times\_sum\_l) 0 [\mkleeneopen{}parm\{i\}\mkleeneclose{};\mkleeneopen{}<\mBbbQ{}+*>\mkleeneclose{}]\mcdot{} THEN Fold `qsum` 1 THEN Auto)
Home
Index