Step
*
of Lemma
q-constraint-negative
No Annotations
∀[x:ℕ ⟶ ℚ]. ∀[r:ℤ]. ∀[k:ℕ+]. ∀[y:ℚ List].
(uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;-(y[k - 1]) + ((-1/x k) * q-linear(k - 1;j.x j;y))))) supposing
(x k < 0 and
(k ≤ ||y||))
BY
{ (RepeatFor 6 ((D 0 THENA Auto))
THEN (Assert ¬((x k) = 0 ∈ ℚ) BY
(RelRST THEN Auto))
THEN (Assert 0 < -(x k) BY
(QMul ⌜-1⌝ 0⋅ THEN Auto))
THEN ((RW (AddrC [1; 2] (LemmaC `q-linear-unroll`)) 0) THENA Auto)
THEN Unfold `q-rel` 0
THEN Repeat ((SplitOnConclITE THENA Auto))) }
1
.....truecase.....
1. x : ℕ ⟶ ℚ
2. r : ℤ
3. k : ℕ+
4. y : ℚ List
5. k ≤ ||y||
6. x k < 0
7. ¬((x k) = 0 ∈ ℚ)
8. 0 < -(x k)
9. r = 0 ∈ ℤ
⊢ uiff(0 = (q-linear(k - 1;j.x j;y) + ((x k) * y[k - 1])) ∈ ℚ;0
= (-(y[k - 1]) + ((-1/x k) * q-linear(k - 1;j.x j;y)))
∈ ℚ)
2
.....truecase.....
1. x : ℕ ⟶ ℚ
2. r : ℤ
3. k : ℕ+
4. y : ℚ List
5. k ≤ ||y||
6. x k < 0
7. ¬((x k) = 0 ∈ ℚ)
8. 0 < -(x k)
9. ¬(r = 0 ∈ ℤ)
10. r = 1 ∈ ℤ
⊢ uiff(0 ≤ (q-linear(k - 1;j.x j;y) + ((x k) * y[k - 1]));0 ≤ (-(y[k - 1]) + ((-1/x k) * q-linear(k - 1;j.x j;y))))
3
.....falsecase.....
1. x : ℕ ⟶ ℚ
2. r : ℤ
3. k : ℕ+
4. y : ℚ List
5. k ≤ ||y||
6. x k < 0
7. ¬((x k) = 0 ∈ ℚ)
8. 0 < -(x k)
9. ¬(r = 0 ∈ ℤ)
10. ¬(r = 1 ∈ ℤ)
⊢ uiff(0 < q-linear(k - 1;j.x j;y) + ((x k) * y[k - 1]);0 < -(y[k - 1]) + ((-1/x k) * q-linear(k - 1;j.x j;y)))
Latex:
Latex:
No Annotations
\mforall{}[x:\mBbbN{} {}\mrightarrow{} \mBbbQ{}]. \mforall{}[r:\mBbbZ{}]. \mforall{}[k:\mBbbN{}\msupplus{}]. \mforall{}[y:\mBbbQ{} List].
(uiff(q-rel(r;q-linear(k;j.x j;y));q-rel(r;-(y[k - 1])
+ ((-1/x k) * q-linear(k - 1;j.x j;y))))) supposing
(x k < 0 and
(k \mleq{} ||y||))
By
Latex:
(RepeatFor 6 ((D 0 THENA Auto))
THEN (Assert \mneg{}((x k) = 0) BY
(RelRST THEN Auto))
THEN (Assert 0 < -(x k) BY
(QMul \mkleeneopen{}-1\mkleeneclose{} 0\mcdot{} THEN Auto))
THEN ((RW (AddrC [1; 2] (LemmaC `q-linear-unroll`)) 0) THENA Auto)
THEN Unfold `q-rel` 0
THEN Repeat ((SplitOnConclITE THENA Auto)))
Home
Index