Step
*
of Lemma
rat-complex-subdiv_wf
∀[k,n:ℕ]. ∀[K:n-dim-complex]. ((K)' ∈ n-dim-complex)
BY
{ (Auto
THEN (Assert K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List BY
((SubsumeC ⌜{c:ℚCube(k)| (c ∈ K)} List⌝⋅ THEN Auto)
THEN DVar `K'
THEN Assert ⌜∀c:ℚCube(k). ((c ∈ K)
⇒ (↑Inhabited(c)))⌝⋅
THEN Auto
THEN (RWO "l_all_iff" (-4) THENA Auto)
THEN (InstHyp [⌜c⌝] (-4)⋅ THENA Auto)
THEN Unfold `rat-cube-dimension` -1
THEN SplitOnHypITE -1
THEN Auto))
THEN (Assert (K)' ∈ ℚCube(k) List BY
((GenConcl ⌜K = L ∈ ({c:ℚCube(k)| ↑Inhabited(c)} List)⌝⋅ THEN Auto) THEN ProveWfLemma))
THEN DVar `K'
THEN MemTypeCD
THEN Auto) }
1
1. k : ℕ
2. n : ℕ
3. K : ℚCube(k) List
4. no_repeats(ℚCube(k);K)
5. (∀c,d∈K. Compatible(c;d))
6. (∀c∈K.dim(c) = n ∈ ℤ)
7. K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List
8. (K)' ∈ ℚCube(k) List
⊢ no_repeats(ℚCube(k);(K)')
2
1. k : ℕ
2. n : ℕ
3. K : ℚCube(k) List
4. no_repeats(ℚCube(k);K)
5. (∀c,d∈K. Compatible(c;d))
6. (∀c∈K.dim(c) = n ∈ ℤ)
7. K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List
8. (K)' ∈ ℚCube(k) List
9. no_repeats(ℚCube(k);(K)')
⊢ (∀c,d∈(K)'. Compatible(c;d))
3
1. k : ℕ
2. n : ℕ
3. K : ℚCube(k) List
4. no_repeats(ℚCube(k);K)
5. (∀c,d∈K. Compatible(c;d))
6. (∀c∈K.dim(c) = n ∈ ℤ)
7. K ∈ {c:ℚCube(k)| ↑Inhabited(c)} List
8. (K)' ∈ ℚCube(k) List
9. no_repeats(ℚCube(k);(K)')
10. (∀c,d∈(K)'. Compatible(c;d))
⊢ (∀c∈(K)'.dim(c) = n ∈ ℤ)
Latex:
Latex:
\mforall{}[k,n:\mBbbN{}]. \mforall{}[K:n-dim-complex]. ((K)' \mmember{} n-dim-complex)
By
Latex:
(Auto
THEN (Assert K \mmember{} \{c:\mBbbQ{}Cube(k)| \muparrow{}Inhabited(c)\} List BY
((SubsumeC \mkleeneopen{}\{c:\mBbbQ{}Cube(k)| (c \mmember{} K)\} List\mkleeneclose{}\mcdot{} THEN Auto)
THEN DVar `K'
THEN Assert \mkleeneopen{}\mforall{}c:\mBbbQ{}Cube(k). ((c \mmember{} K) {}\mRightarrow{} (\muparrow{}Inhabited(c)))\mkleeneclose{}\mcdot{}
THEN Auto
THEN (RWO "l\_all\_iff" (-4) THENA Auto)
THEN (InstHyp [\mkleeneopen{}c\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN Unfold `rat-cube-dimension` -1
THEN SplitOnHypITE -1
THEN Auto))
THEN (Assert (K)' \mmember{} \mBbbQ{}Cube(k) List BY
((GenConcl \mkleeneopen{}K = L\mkleeneclose{}\mcdot{} THEN Auto) THEN ProveWfLemma))
THEN DVar `K'
THEN MemTypeCD
THEN Auto)
Home
Index