Step
*
2
2
1
1
1
of Lemma
functor-curry-iso
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ (functor-comp(functor-uncurry(C);functor-curry(A;B)) x y f A1)
= (f A1)
∈ nat-trans(B;C;functor-comp(functor-uncurry(C);functor-curry(A;B)) x A1;functor-comp(functor-uncurry(C);
                                                                                      functor-curry(A;B)) 
                                                                         y 
                                                                         A1)
BY
{ BLemma `nat-trans-equal2` }
1
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ B ∈ SmallCategory
2
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ C ∈ SmallCategory
3
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ functor-comp(functor-uncurry(C);functor-curry(A;B)) x A1 ∈ Functor(B;C)
4
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ functor-comp(functor-uncurry(C);functor-curry(A;B)) y A1 ∈ Functor(B;C)
5
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ functor-comp(functor-uncurry(C);functor-curry(A;B)) x y f A1
  ∈ nat-trans(B;C;functor-comp(functor-uncurry(C);functor-curry(A;B)) x A1;functor-comp(functor-uncurry(C);
                                                                                        functor-curry(A;B)) 
                                                                           y 
                                                                           A1)
6
.....wf..... 
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ f A1 ∈ nat-trans(B;C;functor-comp(functor-uncurry(C);functor-curry(A;B)) x 
                       A1;functor-comp(functor-uncurry(C);functor-curry(A;B)) y A1)
7
1. A : SmallCategory@i'
2. B : SmallCategory@i'
3. C : SmallCategory@i'
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((functor-comp(functor-curry(A;B);functor-uncurry(C)) x) = x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((functor-comp(functor-uncurry(C);functor-curry(A;B)) f a) = (f a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. ∀x:Functor(A;FUN(B;C)). ((functor-comp(functor-uncurry(C);functor-curry(A;B)) x) = x ∈ Functor(A;FUN(B;C)))
10. x : Functor(A;FUN(B;C))@i
11. y : Functor(A;FUN(B;C))@i
12. f : nat-trans(A;FUN(B;C);x;y)@i
13. A1 : cat-ob(A)
⊢ (functor-comp(functor-uncurry(C);functor-curry(A;B)) x y f A1)
= (f A1)
∈ (A2:cat-ob(B) ⟶ (cat-arrow(C) (functor-comp(functor-uncurry(C);functor-curry(A;B)) x A1 A2) 
                    (functor-comp(functor-uncurry(C);functor-curry(A;B)) y A1 A2)))
Latex:
Latex:
1.  A  :  SmallCategory@i'
2.  B  :  SmallCategory@i'
3.  C  :  SmallCategory@i'
4.  functor-uncurry(C)  \mmember{}  Functor(FUN(A;FUN(B;C));FUN(A  \mtimes{}  B;C))
5.  functor-curry(A;B)  \mmember{}  Functor(FUN(A  \mtimes{}  B;C);FUN(A;FUN(B;C)))
6.  \mforall{}x:Functor(A  \mtimes{}  B;C).  ((functor-comp(functor-curry(A;B);functor-uncurry(C))  x)  =  x)
7.  \mforall{}f:Functor(A;FUN(B;C)).  \mforall{}a:cat-ob(A).
          ((functor-comp(functor-uncurry(C);functor-curry(A;B))  f  a)  =  (f  a))
8.  functor-curry(A;B)functor-uncurry(C)=1
9.  \mforall{}x:Functor(A;FUN(B;C)).  ((functor-comp(functor-uncurry(C);functor-curry(A;B))  x)  =  x)
10.  x  :  Functor(A;FUN(B;C))@i
11.  y  :  Functor(A;FUN(B;C))@i
12.  f  :  nat-trans(A;FUN(B;C);x;y)@i
13.  A1  :  cat-ob(A)
\mvdash{}  (functor-comp(functor-uncurry(C);functor-curry(A;B))  x  y  f  A1)  =  (f  A1)
By
Latex:
BLemma  `nat-trans-equal2`
Home
Index