Step
*
1
1
of Lemma
yoneda-lemma
1. C : SmallCategory@i'
2. x : cat-ob(C)@i
3. y : cat-ob(C)@i
4. a1 : cat-arrow(C) x y@i
5. a2 : cat-arrow(C) x y@i
6. A |→ λg.(cat-comp(C) A x y g a1)
= A |→ λg.(cat-comp(C) A x y g a2)
∈ (A:cat-ob(op-cat(C)) ⟶ (cat-arrow(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) A)))
7. ∀A,B:cat-ob(op-cat(C)). ∀g:cat-arrow(op-cat(C)) A B.
((cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) A) (rep-pre-sheaf(C;y) B)
(A |→ λg.(cat-comp(C) A x y g a1) A)
(rep-pre-sheaf(C;y) A B g))
= (cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;x) B) (rep-pre-sheaf(C;y) B)
(rep-pre-sheaf(C;x) A B g)
(A |→ λg.(cat-comp(C) A x y g a1) B))
∈ (cat-arrow(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) B)))
⊢ a1 = a2 ∈ (cat-arrow(C) x y)
BY
{ (ApFunToHypEquands `Z' ⌜Z x (cat-id(C) x)⌝ ⌜cat-arrow(C) x y⌝ (-2)⋅ THEN RW CatNormC (-1) THEN Auto) }
Latex:
Latex:
1. C : SmallCategory@i'
2. x : cat-ob(C)@i
3. y : cat-ob(C)@i
4. a1 : cat-arrow(C) x y@i
5. a2 : cat-arrow(C) x y@i
6. A |\mrightarrow{} \mlambda{}g.(cat-comp(C) A x y g a1) = A |\mrightarrow{} \mlambda{}g.(cat-comp(C) A x y g a2)
7. \mforall{}A,B:cat-ob(op-cat(C)). \mforall{}g:cat-arrow(op-cat(C)) A B.
((cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;y) A) (rep-pre-sheaf(C;y) B)
(A |\mrightarrow{} \mlambda{}g.(cat-comp(C) A x y g a1) A)
(rep-pre-sheaf(C;y) A B g))
= (cat-comp(TypeCat) (rep-pre-sheaf(C;x) A) (rep-pre-sheaf(C;x) B) (rep-pre-sheaf(C;y) B)
(rep-pre-sheaf(C;x) A B g)
(A |\mrightarrow{} \mlambda{}g.(cat-comp(C) A x y g a1) B)))
\mvdash{} a1 = a2
By
Latex:
(ApFunToHypEquands `Z' \mkleeneopen{}Z x (cat-id(C) x)\mkleeneclose{} \mkleeneopen{}cat-arrow(C) x y\mkleeneclose{} (-2)\mcdot{} THEN RW CatNormC (-1) THEN Auto)
Home
Index