Step
*
2
of Lemma
member_bs_tree_insert
1. [E] : Type
2. cmp : comparison(E)
3. x : E
⊢ ∀value:E
(bs_tree_ordered(E;cmp;bst_leaf(value))
⇒ (∀y:E
(y ∈ bs_tree_insert(cmp;x;bst_leaf(value))
⇐⇒ (y = x ∈ E) ∨ (y ∈ bst_leaf(value) ∧ (¬((cmp x y) = 0 ∈ ℤ))))))
BY
{ (Intros
THEN RepUR ``bs_tree_insert`` 0
THEN (CallByValueReduce 0 THENA Auto)
THEN Repeat (AutoSplit)
THEN (RepUR ``member_bs_tree`` 0 THEN Auto)
THEN SplitOrHyps
THEN Auto
THEN Try (((OrRight THEN Auto) THEN (HypSubst' (-1) (-3) THEN Auto) THEN RWO "comparison-anti" (-3) THEN Auto))) }
1
1. E : Type
2. cmp : comparison(E)
3. x : E
4. value : E
5. ¬cmp value x < 0
6. ¬0 < cmp value x
7. bs_tree_ordered(E;cmp;bst_leaf(value))
8. y : E
9. value = y ∈ E
10. ¬((cmp x y) = 0 ∈ ℤ)
⊢ x = y ∈ E
Latex:
Latex:
1. [E] : Type
2. cmp : comparison(E)
3. x : E
\mvdash{} \mforall{}value:E
(bs\_tree\_ordered(E;cmp;bst\_leaf(value))
{}\mRightarrow{} (\mforall{}y:E
(y \mmember{} bs\_tree\_insert(cmp;x;bst\_leaf(value))
\mLeftarrow{}{}\mRightarrow{} (y = x) \mvee{} (y \mmember{} bst\_leaf(value) \mwedge{} (\mneg{}((cmp x y) = 0))))))
By
Latex:
(Intros
THEN RepUR ``bs\_tree\_insert`` 0
THEN (CallByValueReduce 0 THENA Auto)
THEN Repeat (AutoSplit)
THEN (RepUR ``member\_bs\_tree`` 0 THEN Auto)
THEN SplitOrHyps
THEN Auto
THEN Try (((OrRight THEN Auto)
THEN (HypSubst' (-1) (-3) THEN Auto)
THEN RWO "comparison-anti" (-3)
THEN Auto)))
Home
Index