Step * of Lemma callbyvalueall_seq-lambdas-all

[L,G,H,K,F:Top]. ∀[m:ℕ]. ∀[n:ℕ1].
  (callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.G[f]] H[g]);n;m) 
  callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.(g mk_lambdas(G[f];m))] H[g]);n;m))
BY
((UnivCD THENA Auto)
   THEN (Assert ⌜∃k:ℕ(m (n k) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜n⌝]⋅ THEN Auto'))
   THEN (-1)
   THEN HypSubst' (-1) 0
   THEN RepeatFor ((D (-3) THENA Auto))
   THEN ThinVar `m'
   THEN RepeatFor (MoveToConcl (-3))
   THEN NatInd (-1)
   THEN (UnivCD THENA Auto)) }

1
1. Top
2. Top
3. Top
4. Top
5. : ℤ
6. Top
7. : ℤ
8. 0 ≤ n
⊢ callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.G[f]] H[g]);n;n 0) 
callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.(g mk_lambdas(G[f];n 0))] H[g]);n;n 0)

2
1. Top
2. Top
3. Top
4. Top
5. : ℤ
6. 0 < k
7. ∀K:Top. ∀n:ℤ.
     ((0 ≤ n)
      (callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.G[f]] H[g]);n;n (k 1)) 
        callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.(g mk_lambdas(G[f];n (k 1)))] H[g]);n;n (k 1))))
8. Top
9. : ℤ
10. 0 ≤ n
⊢ callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.G[f]] H[g]);n;n k) 
callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.(F[λf.(g mk_lambdas(G[f];n k))] H[g]);n;n k)


Latex:


Latex:
\mforall{}[L,G,H,K,F:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.(F[\mlambda{}f.G[f]]  H[g]);n;m) 
    \msim{}  callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.(F[\mlambda{}f.(g  mk\_lambdas(G[f];m))]  H[g]);n;m))


By


Latex:
((UnivCD  THENA  Auto)
  THEN  (Assert  \mkleeneopen{}\mexists{}k:\mBbbN{}.  (m  =  (n  +  k))\mkleeneclose{}\mcdot{}  THENA  (InstConcl  [\mkleeneopen{}m  -  n\mkleeneclose{}]\mcdot{}  THEN  Auto'))
  THEN  D  (-1)
  THEN  HypSubst'  (-1)  0
  THEN  RepeatFor  2  ((D  (-3)  THENA  Auto))
  THEN  ThinVar  `m'
  THEN  RepeatFor  2  (MoveToConcl  (-3))
  THEN  NatInd  (-1)
  THEN  (UnivCD  THENA  Auto))




Home Index