Step
*
1
of Lemma
mk_lambdas-fun-unroll-first
1. F : Top
2. k : ℤ
3. 0 < k
4. 0 < k - 1
⇒ (∀K:Top. ∀n:ℤ.
((0 ≤ n)
⇒ (mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + (k - 1)) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n
+ (k - 1)) - 1))))
5. 0 < k
6. K : Top
7. n : ℤ
8. 0 ≤ n
⊢ mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + k) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n + k) - 1)
BY
{ (Decide ⌜k = 1 ∈ ℤ⌝⋅ THENA Auto) }
1
1. F : Top
2. k : ℤ
3. 0 < k
4. 0 < k - 1
⇒ (∀K:Top. ∀n:ℤ.
((0 ≤ n)
⇒ (mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + (k - 1)) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n
+ (k - 1)) - 1))))
5. 0 < k
6. K : Top
7. n : ℤ
8. 0 ≤ n
9. k = 1 ∈ ℤ
⊢ mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + k) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n + k) - 1)
2
1. F : Top
2. k : ℤ
3. 0 < k
4. 0 < k - 1
⇒ (∀K:Top. ∀n:ℤ.
((0 ≤ n)
⇒ (mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + (k - 1)) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n
+ (k - 1)) - 1))))
5. 0 < k
6. K : Top
7. n : ℤ
8. 0 ≤ n
9. ¬(k = 1 ∈ ℤ)
⊢ mk_lambdas-fun(F;λf.mk_applies(f;K;n);n;n + k) ~ λx.mk_lambdas-fun(F;λf.(mk_applies(f;K;n) x);n;(n + k) - 1)
Latex:
Latex:
1. F : Top
2. k : \mBbbZ{}
3. 0 < k
4. 0 < k - 1
{}\mRightarrow{} (\mforall{}K:Top. \mforall{}n:\mBbbZ{}.
((0 \mleq{} n)
{}\mRightarrow{} (mk\_lambdas-fun(F;\mlambda{}f.mk\_applies(f;K;n);n;n + (k - 1))
\msim{} \mlambda{}x.mk\_lambdas-fun(F;\mlambda{}f.(mk\_applies(f;K;n) x);n;(n + (k - 1)) - 1))))
5. 0 < k
6. K : Top
7. n : \mBbbZ{}
8. 0 \mleq{} n
\mvdash{} mk\_lambdas-fun(F;\mlambda{}f.mk\_applies(f;K;n);n;n + k) \msim{} \mlambda{}x.mk\_lambdas-fun(F;\mlambda{}f.(mk\_applies(f;K;n) x);n;(n
+ k) - 1)
By
Latex:
(Decide \mkleeneopen{}k = 1\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index