Nuprl Lemma : sq_stable__cancel

[T,S:Type]. ∀[op:S ⟶ T ⟶ T].  SqStable(Cancel(T;S;op))


Proof




Definitions occuring in Statement :  cancel: Cancel(T;S;op) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  cancel: Cancel(T;S;op) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a infix_ap: y prop: so_apply: x[s] implies:  Q sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__uall uall_wf isect_wf equal_wf infix_ap_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality cumulativity because_Cache functionExtensionality applyEquality hypothesis independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[op:S  {}\mrightarrow{}  T  {}\mrightarrow{}  T].    SqStable(Cancel(T;S;op))



Date html generated: 2017_10_01-AM-08_12_59
Last ObjectModification: 2017_02_28-PM-01_57_30

Theory : gen_algebra_1


Home Index