Nuprl Lemma : xxorder_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R') 
⇒ (order(T;R) 
⇐⇒ order(T;R')))
Proof
Definitions occuring in Statement : 
xxorder: order(T;R)
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
xxorder: order(T;R)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
xxorder_wf, 
binrel_eqv_wf, 
xxrefl_functionality_wrt_breqv, 
xxtrans_functionality_wrt_breqv, 
xxanti_sym_functionality_wrt_breqv, 
xxrefl_wf, 
xxtrans_wf, 
xxanti_sym_wf, 
binrel_eqv_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
addLevel, 
productElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (order(T;R)  \mLeftarrow{}{}\mRightarrow{}  order(T;R')))
Date html generated:
2016_05_15-PM-00_01_21
Last ObjectModification:
2015_12_26-PM-11_26_22
Theory : gen_algebra_1
Home
Index