Nuprl Lemma : xxorder_functionality_wrt_breqv

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R')  (order(T;R) ⇐⇒ order(T;R')))


Proof




Definitions occuring in Statement :  xxorder: order(T;R) binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q xxorder: order(T;R) uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  xxorder_wf binrel_eqv_wf xxrefl_functionality_wrt_breqv xxtrans_functionality_wrt_breqv xxanti_sym_functionality_wrt_breqv xxrefl_wf xxtrans_wf xxanti_sym_wf binrel_eqv_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality cumulativity universeEquality addLevel productElimination independent_functionElimination because_Cache independent_isectElimination levelHypothesis promote_hyp andLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (order(T;R)  \mLeftarrow{}{}\mRightarrow{}  order(T;R')))



Date html generated: 2016_05_15-PM-00_01_21
Last ObjectModification: 2015_12_26-PM-11_26_22

Theory : gen_algebra_1


Home Index