Nuprl Lemma : grp_inv_assoc
∀[g:IGroup]. ∀[a,b:|g|].  (((a * ((~ a) * b)) = b ∈ |g|) ∧ (((~ a) * (a * b)) = b ∈ |g|))
Proof
Definitions occuring in Statement : 
igrp: IGroup, 
grp_inv: ~, 
grp_op: *, 
grp_car: |g|, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
and: P ∧ Q, 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
igrp: IGroup, 
imon: IMonoid, 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
infix_ap: x f y, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
grp_car_wf, 
igrp_wf, 
equal_wf, 
mon_assoc, 
grp_inv_wf, 
grp_op_wf, 
grp_inverse, 
mon_ident, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b:|g|].    (((a  *  ((\msim{}  a)  *  b))  =  b)  \mwedge{}  (((\msim{}  a)  *  (a  *  b))  =  b))
Date html generated:
2017_10_01-AM-08_13_41
Last ObjectModification:
2017_02_28-PM-01_57_56
Theory : groups_1
Home
Index