Nuprl Lemma : grp_leq_weakening_lt
∀[g:OMon]. ∀[a,b:|g|].  a ≤ b supposing a < b
Proof
Definitions occuring in Statement : 
grp_lt: a < b, 
grp_leq: a ≤ b, 
omon: OMon, 
grp_car: |g|, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
loset: LOSet, 
poset: POSet{i}, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
set_leq: a ≤ b, 
set_le: ≤b, 
pi2: snd(t), 
grp_lt: a < b, 
grp_leq: a ≤ b, 
uimplies: b supposing a, 
infix_ap: x f y, 
omon: OMon, 
abmonoid: AbMon, 
mon: Mon, 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
set_leq_weakening_lt, 
oset_of_ocmon_wf, 
loset_wf, 
assert_witness, 
grp_le_wf, 
grp_lt_wf, 
grp_car_wf, 
omon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:OMon].  \mforall{}[a,b:|g|].    a  \mleq{}  b  supposing  a  <  b
Date html generated:
2016_05_15-PM-00_12_21
Last ObjectModification:
2015_12_26-PM-11_42_37
Theory : groups_1
Home
Index