Nuprl Lemma : omon_wf
OMon ∈ 𝕌'
Proof
Definitions occuring in Statement : 
omon: OMon, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
omon: OMon, 
member: t ∈ T, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y
Lemmas referenced : 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
productEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
instantiate, 
functionEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
OMon  \mmember{}  \mBbbU{}'
Date html generated:
2017_10_01-AM-08_14_19
Last ObjectModification:
2017_02_28-PM-01_58_38
Theory : groups_1
Home
Index