Step
*
1
1
of Lemma
itop_shift
1. g : IMonoid
2. a : ℤ
3. b : ℤ
4. a ≤ b
5. E : {a..b-} ⟶ |g|
6. k : ℤ
⊢ ∀b:{a...}. ∀E:{a..b-} ⟶ |g|.  (Π(*,e) a ≤ j < b. E[j] = Π(*,e) a + k ≤ j < b + k. E[j - k] ∈ |g|)
BY
{ BackThruLemma `int_upper_ind` 
THENM UnivCD THENA Auto' }
1
1. g : IMonoid
2. a : ℤ
3. b : ℤ
4. a ≤ b
5. E : {a..b-} ⟶ |g|
6. k : ℤ
7. E1 : {a..a-} ⟶ |g|
⊢ Π(*,e) a ≤ j < a. E1[j] = Π(*,e) a + k ≤ j < a + k. E1[j - k] ∈ |g|
2
1. g : IMonoid
2. a : ℤ
3. b : ℤ
4. a ≤ b
5. E : {a..b-} ⟶ |g|
6. k : ℤ
7. b1 : {a + 1...}
8. ∀E:{a..b1 - 1-} ⟶ |g|. (Π(*,e) a ≤ j < b1 - 1. E[j] = Π(*,e) a + k ≤ j < (b1 - 1) + k. E[j - k] ∈ |g|)
9. E1 : {a..b1-} ⟶ |g|
⊢ Π(*,e) a ≤ j < b1. E1[j] = Π(*,e) a + k ≤ j < b1 + k. E1[j - k] ∈ |g|
Latex:
Latex:
1.  g  :  IMonoid
2.  a  :  \mBbbZ{}
3.  b  :  \mBbbZ{}
4.  a  \mleq{}  b
5.  E  :  \{a..b\msupminus{}\}  {}\mrightarrow{}  |g|
6.  k  :  \mBbbZ{}
\mvdash{}  \mforall{}b:\{a...\}.  \mforall{}E:\{a..b\msupminus{}\}  {}\mrightarrow{}  |g|.    (\mPi{}(*,e)  a  \mleq{}  j  <  b.  E[j]  =  \mPi{}(*,e)  a  +  k  \mleq{}  j  <  b  +  k.  E[j  -  k])
By
Latex:
BackThruLemma  `int\_upper\_ind` 
THENM  UnivCD  THENA  Auto'
Home
Index