Step
*
1
1
of Lemma
itop_unroll_lo
1. g : IMonoid
2. i : ℤ
⊢ ∀[j:{i + 1...}]. ∀[E:{i..j-} ⟶ |g|]. (Π(*,e) i ≤ k < j. E[k] = (E[i] * Π(*,e) i + 1 ≤ k < j. E[k]) ∈ |g|)
BY
{ BackThruLemma `int_upper_ind_uniform` THEN Auto⋅ }
1
1. g : IMonoid
2. i : ℤ
3. j : {i + 1...}
4. ∀[j:{i + 1..j-}]. ∀[E:{i..j-} ⟶ |g|]. (Π(*,e) i ≤ k < j. E[k] = (E[i] * Π(*,e) i + 1 ≤ k < j. E[k]) ∈ |g|)
5. E : {i..j-} ⟶ |g|
⊢ Π(*,e) i ≤ k < j. E[k] = (E[i] * Π(*,e) i + 1 ≤ k < j. E[k]) ∈ |g|
Latex:
Latex:
1. g : IMonoid
2. i : \mBbbZ{}
\mvdash{} \mforall{}[j:\{i + 1...\}]. \mforall{}[E:\{i..j\msupminus{}\} {}\mrightarrow{} |g|].
(\mPi{}(*,e) i \mleq{} k < j. E[k] = (E[i] * \mPi{}(*,e) i + 1 \mleq{} k < j. E[k]))
By
Latex:
BackThruLemma `int\_upper\_ind\_uniform` THEN Auto\mcdot{}
Home
Index