Nuprl Lemma : mon_when_thru_op

[g:IMonoid]. ∀[b:𝔹]. ∀[p,q:|g|].  ((when b. (p q)) ((when b. p) (when b. q)) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_when: when b. p imon: IMonoid grp_op: * grp_car: |g| bool: 𝔹 uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mon_when: when b. p bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff imon: IMonoid squash: T prop: and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf bool_wf imon_wf infix_ap_wf grp_op_wf equal_wf squash_wf true_wf grp_id_wf mon_ident iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule hypothesis extract_by_obid isectElimination setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].  \mforall{}[p,q:|g|].    ((when  b.  (p  *  q))  =  ((when  b.  p)  *  (when  b.  q)))



Date html generated: 2017_10_01-AM-08_17_13
Last ObjectModification: 2017_02_28-PM-02_02_09

Theory : groups_1


Home Index