Nuprl Lemma : nat_op_zero
∀[g:IMonoid]. ∀[e:|g|].  (0 x(*;e) e = e ∈ |g|)
Proof
Definitions occuring in Statement : 
nat_op: n x(op;id) e, 
imon: IMonoid, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
imon: IMonoid, 
nat_op: n x(op;id) e, 
squash: ↓T, 
prop: ℙ, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
grp_car_wf, 
imon_wf, 
equal_wf, 
squash_wf, 
true_wf, 
itop_unroll_base, 
int_seg_wf, 
grp_id_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    (0  x(*;e)  e  =  e)
Date html generated:
2017_10_01-AM-08_15_59
Last ObjectModification:
2017_02_28-PM-02_00_52
Theory : groups_1
Home
Index