Nuprl Lemma : bpa-equiv_weakening

p:{2...}. ∀a,b:basic-padic(p).  ((a b ∈ basic-padic(p))  bpa-equiv(p;b;a))


Proof




Definitions occuring in Statement :  bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} all: x:A. B[x] implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) implies:  Q prop: int_upper: {i...} guard: {T} subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  bpa-equiv-equiv equal_wf basic-padic_wf int_upper_wf and_wf bpa-equiv_wf subtype_rel_sets le_wf less_than_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination setElimination rename hypothesis natural_numberEquality dependent_functionElimination hyp_replacement equalitySymmetry sqequalRule dependent_set_memberEquality independent_pairFormation applyLambdaEquality applyEquality because_Cache lambdaEquality intEquality independent_isectElimination setEquality unionElimination voidElimination independent_functionElimination isect_memberEquality voidEquality

Latex:
\mforall{}p:\{2...\}.  \mforall{}a,b:basic-padic(p).    ((a  =  b)  {}\mRightarrow{}  bpa-equiv(p;b;a))



Date html generated: 2018_05_21-PM-03_25_01
Last ObjectModification: 2018_05_19-AM-08_22_31

Theory : rings_1


Home Index