Nuprl Lemma : bpa-equiv_weakening
∀p:{2...}. ∀a,b:basic-padic(p).  ((a = b ∈ basic-padic(p)) 
⇒ bpa-equiv(p;b;a))
Proof
Definitions occuring in Statement : 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_upper: {i...}
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
bpa-equiv-equiv, 
equal_wf, 
basic-padic_wf, 
int_upper_wf, 
and_wf, 
bpa-equiv_wf, 
subtype_rel_sets, 
le_wf, 
less_than_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
setEquality, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}p:\{2...\}.  \mforall{}a,b:basic-padic(p).    ((a  =  b)  {}\mRightarrow{}  bpa-equiv(p;b;a))
Date html generated:
2018_05_21-PM-03_25_01
Last ObjectModification:
2018_05_19-AM-08_22_31
Theory : rings_1
Home
Index