Step
*
1
of Lemma
bpa-norm-padic
1. p : ℕ+
2. n : {1...}
3. x1 : p-adics(p)
4. ¬((x1 1) = 0 ∈ ℤ)
5. (x1 1) ≤ (x1 n)
6. 0 ≤ (x1 1)
⊢ let k,b = p-unitize(p;x1;n) in <n - k, b> = <n, x1> ∈ (n:ℕ × if (n =z 0) then p-adics(p) else p-units(p) fi )
BY
{ (RepUR ``p-unitize`` 0 THEN Subst' greatest-p-zero(n;x1) ~ 0 0 THEN Reduce 0) }
1
.....equality.....
1. p : ℕ+
2. n : {1...}
3. x1 : p-adics(p)
4. ¬((x1 1) = 0 ∈ ℤ)
5. (x1 1) ≤ (x1 n)
6. 0 ≤ (x1 1)
⊢ greatest-p-zero(n;x1) ~ 0
2
1. p : ℕ+
2. n : {1...}
3. x1 : p-adics(p)
4. ¬((x1 1) = 0 ∈ ℤ)
5. (x1 1) ≤ (x1 n)
6. 0 ≤ (x1 1)
⊢ <n - 0, x1> = <n, x1> ∈ (n:ℕ × if (n =z 0) then p-adics(p) else p-units(p) fi )
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. n : \{1...\}
3. x1 : p-adics(p)
4. \mneg{}((x1 1) = 0)
5. (x1 1) \mleq{} (x1 n)
6. 0 \mleq{} (x1 1)
\mvdash{} let k,b = p-unitize(p;x1;n) in <n - k, b> = <n, x1>
By
Latex:
(RepUR ``p-unitize`` 0 THEN Subst' greatest-p-zero(n;x1) \msim{} 0 0 THEN Reduce 0)
Home
Index