Nuprl Lemma : bpa-norm-padic
∀[p:ℕ+]. ∀[x:padic(p)].  (bpa-norm(p;x) = x ∈ padic(p))
Proof
Definitions occuring in Statement : 
padic: padic(p), 
bpa-norm: bpa-norm(p;x), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
padic: padic(p), 
bpa-norm: bpa-norm(p;x), 
member: t ∈ T, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
squash: ↓T, 
prop: ℙ, 
nat_plus: ℕ+, 
label: ...$L... t, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
subtype_rel: A ⊆r B, 
eq_int: (i =z j), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_upper: {i...}, 
p-units: p-units(p), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
p-adics: p-adics(p), 
less_than: a < b, 
p-unitize: p-unitize(p;a;n), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
equal_wf, 
squash_wf, 
true_wf, 
nat_wf, 
ifthenelse_wf, 
p-adics_wf, 
p-units_wf, 
nat_properties, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel_self, 
iff_weakening_equal, 
upper_subtype_nat, 
false_wf, 
nequal-le-implies, 
zero-add, 
p-adic-non-decreasing, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel, 
less_than_wf, 
int_upper_properties, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
le_weakening2, 
int_seg_wf, 
exp_wf2, 
int_seg_properties, 
padic_wf, 
nat_plus_wf, 
set_subtype_base, 
int_subtype_base, 
greatest-p-zero-property, 
decidable__equal_nat, 
greatest-p-zero_wf, 
equal-wf-T-base, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
productEquality, 
instantiate, 
because_Cache, 
dependent_pairEquality, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
promote_hyp, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
hypothesis_subsumption, 
addEquality, 
applyLambdaEquality, 
functionExtensionality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:padic(p)].    (bpa-norm(p;x)  =  x)
Date html generated:
2018_05_21-PM-03_26_17
Last ObjectModification:
2018_05_19-AM-08_24_07
Theory : rings_1
Home
Index