Nuprl Lemma : bpa-norm-padic

[p:ℕ+]. ∀[x:padic(p)].  (bpa-norm(p;x) x ∈ padic(p))


Proof




Definitions occuring in Statement :  padic: padic(p) bpa-norm: bpa-norm(p;x) nat_plus: + uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] padic: padic(p) bpa-norm: bpa-norm(p;x) member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  squash: T prop: nat_plus: + label: ...$L... t ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B eq_int: (i =z j) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} p-units: p-units(p) int_seg: {i..j-} lelt: i ≤ j < k p-adics: p-adics(p) less_than: a < b p-unitize: p-unitize(p;a;n) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf squash_wf true_wf nat_wf ifthenelse_wf p-adics_wf p-units_wf nat_properties nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma le_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtype_rel_self iff_weakening_equal upper_subtype_nat false_wf nequal-le-implies zero-add p-adic-non-decreasing decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf int_upper_properties intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf le_weakening2 int_seg_wf exp_wf2 int_seg_properties padic_wf nat_plus_wf set_subtype_base int_subtype_base greatest-p-zero-property decidable__equal_nat greatest-p-zero_wf equal-wf-T-base subtract_wf itermSubtract_wf int_term_value_subtract_lemma not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination applyEquality lambdaEquality imageElimination universeEquality productEquality instantiate because_Cache dependent_pairEquality dependent_functionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality promote_hyp cumulativity imageMemberEquality baseClosed hypothesis_subsumption addEquality applyLambdaEquality functionExtensionality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:padic(p)].    (bpa-norm(p;x)  =  x)



Date html generated: 2018_05_21-PM-03_26_17
Last ObjectModification: 2018_05_19-AM-08_24_07

Theory : rings_1


Home Index