Nuprl Lemma : greatest-p-zero_wf

[a:ℕ+ ⟶ ℤ]. ∀[n:ℕ].  (greatest-p-zero(n;a) ∈ ℕ)


Proof




Definitions occuring in Statement :  greatest-p-zero: greatest-p-zero(n;a) nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T greatest-p-zero: greatest-p-zero(n;a) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + int_seg: {i..j-} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k subtract: m subtype_rel: A ⊆B top: Top true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff
Lemmas referenced :  primrec_wf nat_wf false_wf le_wf eq_int_wf nat_plus_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf bool_wf eqtt_to_assert assert_of_eq_int nat_properties int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation lambdaEquality applyEquality functionExtensionality addEquality setElimination rename productElimination dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality intEquality because_Cache minusEquality equalityElimination equalityTransitivity equalitySymmetry approximateComputation dependent_pairFormation int_eqEquality axiomEquality functionEquality

Latex:
\mforall{}[a:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (greatest-p-zero(n;a)  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-03_22_04
Last ObjectModification: 2018_05_19-AM-08_19_00

Theory : rings_1


Home Index