Nuprl Lemma : p-adic-non-decreasing

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+. ∀i:ℕ+1.  ((a i) ≤ (a n))


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) int_seg: {i..j-} nat_plus: + le: A ≤ B all: x:A. B[x] apply: a add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k p-adics: p-adics(p) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) subtract: m
Lemmas referenced :  int_seg_wf p-adics_wf nat_plus_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv subtract-1-ge-0 istype-nat add-zero int_seg_properties nat_plus_properties decidable__le decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel intformnot_wf int_formula_prop_not_lemma subtract_wf itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma le_functionality le_weakening p-adic-bounds subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtract-is-int-iff false_wf istype-le minus-one-mul add-associates add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis inhabitedIsType intWeakElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies applyEquality dependent_set_memberEquality_alt unionElimination because_Cache instantiate cumulativity intEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i:\mBbbN{}\msupplus{}n  +  1.    ((a  i)  \mleq{}  (a  n))



Date html generated: 2019_10_15-AM-10_34_32
Last ObjectModification: 2018_12_08-PM-00_23_49

Theory : rings_1


Home Index