Nuprl Lemma : p-adic-bounds
∀p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.  ((0 ≤ ((a (n + 1)) - a n)) ∧ (((a (n + 1)) - a n) ≤ (p^(n + 1) - p^n)))
Proof
Definitions occuring in Statement : 
p-adics: p-adics(p)
, 
exp: i^n
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
p-adics: p-adics(p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
nat: ℕ
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
lelt: i ≤ j < k
Lemmas referenced : 
sq_stable__le, 
subtract_wf, 
nat_plus_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
int_seg_wf, 
exp_wf2, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_plus_subtype_nat, 
p-adics_wf, 
mul_bounds_1a, 
exp_wf4, 
mul_preserves_le, 
mul-non-neg1, 
exp_wf_nat_plus, 
multiply-is-int-iff, 
int_seg_properties, 
itermMultiply_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
exp_add, 
subtype_rel_self, 
iff_weakening_equal, 
exp1, 
left_mul_subtract_distrib, 
mul-one, 
equal_wf, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
minusEquality, 
lambdaEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
baseApply, 
closedConclusion, 
applyLambdaEquality, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((0  \mleq{}  ((a  (n  +  1))  -  a  n))  \mwedge{}  (((a  (n  +  1))  -  a  n)  \mleq{}  (p\^{}(n  +  1)  -  p\^{}n)))
Date html generated:
2018_05_21-PM-03_19_43
Last ObjectModification:
2018_05_19-AM-08_10_59
Theory : rings_1
Home
Index