Nuprl Lemma : p-adic-bounds
∀p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+. ((0 ≤ ((a (n + 1)) - a n)) ∧ (((a (n + 1)) - a n) ≤ (p^(n + 1) - p^n)))
Proof
Definitions occuring in Statement :
p-adics: p-adics(p)
,
exp: i^n
,
nat_plus: ℕ+
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
apply: f a
,
subtract: n - m
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
p-adics: p-adics(p)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
int_seg: {i..j-}
,
sq_stable: SqStable(P)
,
eqmod: a ≡ b mod m
,
divides: b | a
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
guard: {T}
,
squash: ↓T
,
nat: ℕ
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
lelt: i ≤ j < k
Lemmas referenced :
sq_stable__le,
subtract_wf,
nat_plus_wf,
decidable__lt,
false_wf,
not-lt-2,
less-iff-le,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
int_seg_wf,
exp_wf2,
subtype_base_sq,
int_subtype_base,
nat_plus_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
nat_plus_subtype_nat,
p-adics_wf,
mul_bounds_1a,
exp_wf4,
mul_preserves_le,
mul-non-neg1,
exp_wf_nat_plus,
multiply-is-int-iff,
int_seg_properties,
itermMultiply_wf,
intformeq_wf,
itermSubtract_wf,
int_term_value_mul_lemma,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
squash_wf,
true_wf,
exp_add,
subtype_rel_self,
iff_weakening_equal,
exp1,
left_mul_subtract_distrib,
mul-one,
equal_wf,
le_weakening2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalHypSubstitution,
setElimination,
thin,
rename,
introduction,
extract_by_obid,
isectElimination,
natural_numberEquality,
applyEquality,
functionExtensionality,
hypothesisEquality,
hypothesis,
dependent_set_memberEquality,
addEquality,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
voidElimination,
productElimination,
independent_functionElimination,
independent_isectElimination,
sqequalRule,
because_Cache,
minusEquality,
lambdaEquality,
instantiate,
cumulativity,
intEquality,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed,
imageElimination,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidEquality,
baseApply,
closedConclusion,
applyLambdaEquality,
universeEquality,
multiplyEquality
Latex:
\mforall{}p:\mBbbN{}\msupplus{}. \mforall{}a:p-adics(p). \mforall{}n:\mBbbN{}\msupplus{}.
((0 \mleq{} ((a (n + 1)) - a n)) \mwedge{} (((a (n + 1)) - a n) \mleq{} (p\^{}(n + 1) - p\^{}n)))
Date html generated:
2018_05_21-PM-03_19_43
Last ObjectModification:
2018_05_19-AM-08_10_59
Theory : rings_1
Home
Index