Nuprl Lemma : p-adic-bounds

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.  ((0 ≤ ((a (n 1)) n)) ∧ (((a (n 1)) n) ≤ (p^(n 1) p^n)))


Proof




Definitions occuring in Statement :  p-adics: p-adics(p) exp: i^n nat_plus: + le: A ≤ B all: x:A. B[x] and: P ∧ Q apply: a subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B p-adics: p-adics(p) uall: [x:A]. B[x] member: t ∈ T nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} sq_stable: SqStable(P) eqmod: a ≡ mod m divides: a exists: x:A. B[x] sq_type: SQType(T) guard: {T} squash: T nat: satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top lelt: i ≤ j < k
Lemmas referenced :  sq_stable__le subtract_wf nat_plus_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf int_seg_wf exp_wf2 subtype_base_sq int_subtype_base nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf nat_plus_subtype_nat p-adics_wf mul_bounds_1a exp_wf4 mul_preserves_le mul-non-neg1 exp_wf_nat_plus multiply-is-int-iff int_seg_properties itermMultiply_wf intformeq_wf itermSubtract_wf int_term_value_mul_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma squash_wf true_wf exp_add subtype_rel_self iff_weakening_equal exp1 left_mul_subtract_distrib mul-one equal_wf le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename introduction extract_by_obid isectElimination natural_numberEquality applyEquality functionExtensionality hypothesisEquality hypothesis dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination sqequalRule because_Cache minusEquality lambdaEquality instantiate cumulativity intEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidEquality baseApply closedConclusion applyLambdaEquality universeEquality multiplyEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((0  \mleq{}  ((a  (n  +  1))  -  a  n))  \mwedge{}  (((a  (n  +  1))  -  a  n)  \mleq{}  (p\^{}(n  +  1)  -  p\^{}n)))



Date html generated: 2018_05_21-PM-03_19_43
Last ObjectModification: 2018_05_19-AM-08_10_59

Theory : rings_1


Home Index