Nuprl Lemma : mul-non-neg1
∀[x,y:ℤ].  (0 ≤ (x * y)) supposing ((0 ≤ y) and (0 ≤ x))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
mul_bounds_1a, 
le_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
multiplyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
intEquality, 
voidElimination
Latex:
\mforall{}[x,y:\mBbbZ{}].    (0  \mleq{}  (x  *  y))  supposing  ((0  \mleq{}  y)  and  (0  \mleq{}  x))
Date html generated:
2016_05_14-AM-07_20_45
Last ObjectModification:
2015_12_26-PM-01_32_01
Theory : int_2
Home
Index