Nuprl Lemma : mul-non-neg1

[x,y:ℤ].  (0 ≤ (x y)) supposing ((0 ≤ y) and (0 ≤ x))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: prop: le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False
Lemmas referenced :  mul_bounds_1a le_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality hypothesisEquality hypothesis natural_numberEquality because_Cache sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination multiplyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intEquality voidElimination

Latex:
\mforall{}[x,y:\mBbbZ{}].    (0  \mleq{}  (x  *  y))  supposing  ((0  \mleq{}  y)  and  (0  \mleq{}  x))



Date html generated: 2016_05_14-AM-07_20_45
Last ObjectModification: 2015_12_26-PM-01_32_01

Theory : int_2


Home Index