Nuprl Lemma : cdrng_is_abdmonoid
∀[r:CDRng]. ((r↓+gp ∈ AbDMon) ∧ (r↓xmn ∈ AbDMon))
Proof
Definitions occuring in Statement : 
add_grp_of_rng: r↓+gp
, 
mul_mon_of_rng: r↓xmn
, 
cdrng: CDRng
, 
abdmonoid: AbDMon
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cdrng: CDRng
, 
crng: CRng
, 
comm: Comm(T;op)
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
subtype_rel: A ⊆r B
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_eq: =b
, 
pi2: snd(t)
, 
mon: Mon
, 
prop: ℙ
, 
grp_op: *
, 
mul_mon_of_rng: r↓xmn
Lemmas referenced : 
cdrng_properties, 
rng_plus_comm, 
add_grp_of_rng_wf_a, 
grp_subtype_mon, 
eqfun_p_wf, 
grp_car_wf, 
grp_eq_wf, 
comm_wf, 
grp_op_wf, 
mul_mon_of_rng_wf_a, 
crng_properties, 
cdrng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[r:CDRng].  ((r\mdownarrow{}+gp  \mmember{}  AbDMon)  \mwedge{}  (r\mdownarrow{}xmn  \mmember{}  AbDMon))
Date html generated:
2018_05_21-PM-03_14_36
Last ObjectModification:
2018_05_19-AM-08_07_55
Theory : rings_1
Home
Index