Nuprl Lemma : cdrng_is_abdmonoid

[r:CDRng]. ((r↓+gp ∈ AbDMon) ∧ (r↓xmn ∈ AbDMon))


Proof




Definitions occuring in Statement :  add_grp_of_rng: r↓+gp mul_mon_of_rng: r↓xmn cdrng: CDRng abdmonoid: AbDMon uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T cdrng: CDRng crng: CRng comm: Comm(T;op) abdmonoid: AbDMon dmon: DMon subtype_rel: A ⊆B add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_eq: =b pi2: snd(t) mon: Mon prop: grp_op: * mul_mon_of_rng: r↓xmn
Lemmas referenced :  cdrng_properties rng_plus_comm add_grp_of_rng_wf_a grp_subtype_mon eqfun_p_wf grp_car_wf grp_eq_wf comm_wf grp_op_wf mul_mon_of_rng_wf_a crng_properties cdrng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality because_Cache applyEquality sqequalRule

Latex:
\mforall{}[r:CDRng].  ((r\mdownarrow{}+gp  \mmember{}  AbDMon)  \mwedge{}  (r\mdownarrow{}xmn  \mmember{}  AbDMon))



Date html generated: 2018_05_21-PM-03_14_36
Last ObjectModification: 2018_05_19-AM-08_07_55

Theory : rings_1


Home Index