Step
*
of Lemma
ideal_defines_eqv
∀r:CRng. ∀[a:|r| ⟶ ℙ]. (a Ideal of r
⇒ EquivRel(|r|;u,v.a (u +r (-r v))))
BY
{ (Auto THEN D -1 THEN RepeatFor 2 (D 0) THEN Auto) }
1
1. r : CRng@i'
2. [a] : |r| ⟶ ℙ
3. a SubGrp of r↓+gp@i
4. ∀a@0,b:|r|. ((a a@0)
⇒ (a (a@0 * b)))@i
5. a@0 : |r|@i
⊢ a (a@0 +r (-r a@0))
2
1. r : CRng@i'
2. [a] : |r| ⟶ ℙ
3. a SubGrp of r↓+gp@i
4. ∀a@0,b:|r|. ((a a@0)
⇒ (a (a@0 * b)))@i
⊢ Sym(|r|;u,v.a (u +r (-r v)))
3
1. r : CRng@i'
2. [a] : |r| ⟶ ℙ
3. a SubGrp of r↓+gp@i
4. ∀a@0,b:|r|. ((a a@0)
⇒ (a (a@0 * b)))@i
⊢ Trans(|r|;u,v.a (u +r (-r v)))
Latex:
Latex:
\mforall{}r:CRng. \mforall{}[a:|r| {}\mrightarrow{} \mBbbP{}]. (a Ideal of r {}\mRightarrow{} EquivRel(|r|;u,v.a (u +r (-r v))))
By
Latex:
(Auto THEN D -1 THEN RepeatFor 2 (D 0) THEN Auto)
Home
Index