Nuprl Lemma : ideal_of_prime
∀r:CRng. ∀u:|r|.  (r-Prime(u) 
⇐⇒ IsPrimeIdeal(r;(u)r))
Proof
Definitions occuring in Statement : 
prime_ideal_p: IsPrimeIdeal(R;P)
, 
princ_ideal: (a)r
, 
rprime: r-Prime(u)
, 
crng: CRng
, 
rng_car: |r|
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prime_ideal_p: IsPrimeIdeal(R;P)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
ideal: Ideal(r){i}
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
rprime: r-Prime(u)
, 
false: False
, 
guard: {T}
Lemmas referenced : 
rng_car_wf, 
crng_wf, 
princ_ideal_mem_cond, 
rng_one_wf, 
princ_ideal_wf, 
ideal_wf, 
rng_times_wf, 
ring_divs_wf, 
iff_wf, 
rprime_wf, 
not_wf, 
all_wf, 
infix_ap_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
allFunctionality, 
orFunctionality, 
because_Cache, 
andLevelFunctionality, 
impliesLevelFunctionality, 
allLevelFunctionality, 
orLevelFunctionality, 
productEquality, 
functionEquality, 
voidElimination, 
introduction
Latex:
\mforall{}r:CRng.  \mforall{}u:|r|.    (r-Prime(u)  \mLeftarrow{}{}\mRightarrow{}  IsPrimeIdeal(r;(u)r))
Date html generated:
2016_05_15-PM-00_25_34
Last ObjectModification:
2015_12_27-AM-00_00_26
Theory : rings_1
Home
Index