Nuprl Lemma : ideal_of_prime

r:CRng. ∀u:|r|.  (r-Prime(u) ⇐⇒ IsPrimeIdeal(r;(u)r))


Proof




Definitions occuring in Statement :  prime_ideal_p: IsPrimeIdeal(R;P) princ_ideal: (a)r rprime: r-Prime(u) crng: CRng rng_car: |r| all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] prime_ideal_p: IsPrimeIdeal(R;P) member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q subtype_rel: A ⊆B ideal: Ideal(r){i} prop: infix_ap: y so_lambda: λ2x.t[x] or: P ∨ Q so_apply: x[s] rprime: r-Prime(u) false: False guard: {T}
Lemmas referenced :  rng_car_wf crng_wf princ_ideal_mem_cond rng_one_wf princ_ideal_wf ideal_wf rng_times_wf ring_divs_wf iff_wf rprime_wf not_wf all_wf infix_ap_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addLevel productElimination independent_pairFormation impliesFunctionality dependent_functionElimination independent_functionElimination applyEquality lambdaEquality sqequalRule universeEquality allFunctionality orFunctionality because_Cache andLevelFunctionality impliesLevelFunctionality allLevelFunctionality orLevelFunctionality productEquality functionEquality voidElimination introduction

Latex:
\mforall{}r:CRng.  \mforall{}u:|r|.    (r-Prime(u)  \mLeftarrow{}{}\mRightarrow{}  IsPrimeIdeal(r;(u)r))



Date html generated: 2016_05_15-PM-00_25_34
Last ObjectModification: 2015_12_27-AM-00_00_26

Theory : rings_1


Home Index