Nuprl Lemma : princ_ideal_wf
∀[r:Rng]. ∀[a:|r|].  ((a)r ∈ Ideal(r){i})
Proof
Definitions occuring in Statement : 
princ_ideal: (a)r, 
ideal: Ideal(r){i}, 
rng: Rng, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rng: Rng, 
ideal: Ideal(r){i}, 
so_apply: x[s], 
infix_ap: x f y, 
so_lambda: λ2x.t[x], 
princ_ideal: (a)r, 
prop: ℙ, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
grp_op: *, 
grp_inv: ~, 
grp_car: |g|, 
pi1: fst(t), 
pi2: snd(t), 
grp_id: e, 
add_grp_of_rng: r↓+gp, 
subgrp_p: s SubGrp of g, 
ideal_p: S Ideal of R, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T
Lemmas referenced : 
rng_car_wf, 
rng_wf, 
rng_times_wf, 
equal_wf, 
exists_wf, 
rng_times_zero, 
rng_zero_wf, 
rng_times_over_minus, 
iff_weakening_equal, 
infix_ap_wf, 
true_wf, 
squash_wf, 
rng_minus_wf, 
rng_times_over_plus, 
rng_plus_wf, 
rng_times_assoc, 
subgrp_p_wf, 
add_grp_of_rng_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality_alt, 
because_Cache, 
dependent_set_memberEquality_alt, 
applyEquality, 
lambdaEquality, 
productElimination, 
lambdaFormation, 
independent_pairFormation, 
dependent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
imageElimination, 
cumulativity, 
functionEquality, 
productIsType, 
functionIsType, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].    ((a)r  \mmember{}  Ideal(r)\{i\})
Date html generated:
2019_10_15-AM-10_33_28
Last ObjectModification:
2018_10_08-AM-09_08_21
Theory : rings_1
Home
Index