Nuprl Lemma : int-to-ring-minus-one

[r:Rng]. (int-to-ring(r;-1) (-r 1) ∈ |r|)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng: Rng rng_one: 1 rng_minus: -r rng_car: |r| uall: [x:A]. B[x] apply: a minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  int-to-ring: int-to-ring(r;n) lt_int: i <j ifthenelse: if then else fi  btrue: tt rng_nat_op: n ⋅e mon_nat_op: n ⋅ e add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y subtract: m uall: [x:A]. B[x] bfalse: ff member: t ∈ T squash: T rng: Rng true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q infix_ap: y
Lemmas referenced :  equal_wf rng_car_wf rng_minus_over_plus rng_zero_wf rng_one_wf rng_minus_wf iff_weakening_equal rng_plus_wf rng_minus_zero rng_plus_zero rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination because_Cache hypothesis setElimination rename hypothesisEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination universeIsType

Latex:
\mforall{}[r:Rng].  (int-to-ring(r;-1)  =  (-r  1))



Date html generated: 2020_05_19-PM-10_07_58
Last ObjectModification: 2020_01_08-PM-06_00_23

Theory : rings_1


Home Index