Step
*
2
2
of Lemma
p-digit_wf
1. p : ℕ+
2. a : n:ℕ+ ⟶ ℕp^n
3. ∀n:ℕ+. ((a (n + 1)) ≡ (a n) mod p^n)
4. n : ℕ+
5. ¬(n = 1 ∈ ℤ)
6. c : ℤ
7. ((a n) - a (n - 1)) = (p^(n - 1) * c) ∈ ℤ
⊢ c ∈ ℕp
BY
{ ((InstLemma `p-adic-bounds` [⌜p⌝;⌜a⌝;⌜n - 1⌝]⋅ THENA Auto) THEN (Subst' (n - 1) + 1 ~ n -1 THENA Auto)) }
1
1. p : ℕ+
2. a : n:ℕ+ ⟶ ℕp^n
3. ∀n:ℕ+. ((a (n + 1)) ≡ (a n) mod p^n)
4. n : ℕ+
5. ¬(n = 1 ∈ ℤ)
6. c : ℤ
7. ((a n) - a (n - 1)) = (p^(n - 1) * c) ∈ ℤ
8. (0 ≤ ((a n) - a (n - 1))) ∧ (((a n) - a (n - 1)) ≤ (p^n - p^(n - 1)))
⊢ c ∈ ℕp
Latex:
Latex:
1. p : \mBbbN{}\msupplus{}
2. a : n:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbN{}p\^{}n
3. \mforall{}n:\mBbbN{}\msupplus{}. ((a (n + 1)) \mequiv{} (a n) mod p\^{}n)
4. n : \mBbbN{}\msupplus{}
5. \mneg{}(n = 1)
6. c : \mBbbZ{}
7. ((a n) - a (n - 1)) = (p\^{}(n - 1) * c)
\mvdash{} c \mmember{} \mBbbN{}p
By
Latex:
((InstLemma `p-adic-bounds` [\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}n - 1\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst' (n - 1) + 1 \msim{} n -1 THENA Auto)
)
Home
Index