Nuprl Lemma : p-digit_wf
∀[p:ℕ+]. ∀[a:p-adics(p)]. ∀[n:ℕ+].  (p-digit(p;a;n) ∈ ℕp)
Proof
Definitions occuring in Statement : 
p-digit: p-digit(p;a;n), 
p-adics: p-adics(p), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
p-adics: p-adics(p), 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
and: P ∧ Q, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
eq_int: (i =z j), 
p-digit: p-digit(p;a;n), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
eqmod: a ≡ b mod m, 
divides: b | a, 
assert: ↑b, 
bnot: ¬bb, 
bfalse: ff, 
top: Top, 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
nat: ℕ, 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
int_seg: {i..j-}, 
lelt: i ≤ j < k
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
p-adics_wf, 
nat_plus_wf, 
int_seg_wf, 
subtype_rel_self, 
exp1, 
exp-positive, 
set_subtype_base, 
less_than_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
istype-less_than, 
subtract-add-cancel, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
exp-fastexp, 
equal-wf-base, 
nequal_wf, 
subtype_rel_sets, 
exp_wf3, 
div-cancel2, 
p-adic-bounds, 
eqmod_wf, 
exp_wf2, 
istype-le, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
multiply-is-int-iff, 
exp_wf_nat_plus, 
mul_cancel_in_le, 
mul_cancel_in_lt, 
mul-commutes, 
exp_step, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
lambdaEquality, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
productElimination, 
promote_hyp, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
equalityElimination, 
lambdaFormation, 
setEquality, 
functionIsType, 
addEquality, 
productIsType, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
multiplyEquality, 
applyLambdaEquality
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].  \mforall{}[n:\mBbbN{}\msupplus{}].    (p-digit(p;a;n)  \mmember{}  \mBbbN{}p)
Date html generated:
2020_05_19-PM-10_08_18
Last ObjectModification:
2020_01_08-PM-06_00_08
Theory : rings_1
Home
Index