Nuprl Lemma : p-digit_wf

[p:ℕ+]. ∀[a:p-adics(p)]. ∀[n:ℕ+].  (p-digit(p;a;n) ∈ ℕp)


Proof




Definitions occuring in Statement :  p-digit: p-digit(p;a;n) p-adics: p-adics(p) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-adics: p-adics(p) all: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) p-digit: p-digit(p;a;n) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False eqmod: a ≡ mod m divides: a assert: b bnot: ¬bb bfalse: ff top: Top uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 nat: nequal: a ≠ b ∈  int_nzero: -o int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base p-adics_wf nat_plus_wf int_seg_wf subtype_rel_self exp1 exp-positive set_subtype_base less_than_wf subtract_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-less_than subtract-add-cancel neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf le_wf int_formula_prop_le_lemma intformle_wf decidable__le exp-fastexp equal-wf-base nequal_wf subtype_rel_sets exp_wf3 div-cancel2 p-adic-bounds eqmod_wf exp_wf2 istype-le itermAdd_wf int_term_value_add_lemma false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff exp_wf_nat_plus mul_cancel_in_le mul_cancel_in_lt mul-commutes exp_step int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid dependent_functionElimination hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType lambdaEquality baseClosed imageMemberEquality independent_pairFormation dependent_set_memberEquality applyEquality dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  voidElimination productElimination promote_hyp voidEquality isect_memberEquality dependent_pairFormation equalityElimination lambdaFormation setEquality functionIsType addEquality productIsType closedConclusion baseApply pointwiseFunctionality multiplyEquality applyLambdaEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].  \mforall{}[n:\mBbbN{}\msupplus{}].    (p-digit(p;a;n)  \mmember{}  \mBbbN{}p)



Date html generated: 2020_05_19-PM-10_08_18
Last ObjectModification: 2020_01_08-PM-06_00_08

Theory : rings_1


Home Index