Nuprl Lemma : exp_wf3

[v:ℤ-o]. ∀[n:ℕ].  (v^n ∈ ℤ-o)


Proof




Definitions occuring in Statement :  exp: i^n int_nzero: -o nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  exp: i^n uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b subtype_rel: A ⊆B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec-unroll subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int int_entire_a int_nzero_wf int_nzero_properties intformeq_wf int_formula_prop_eq_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality addLevel instantiate cumulativity baseClosed unionElimination because_Cache equalityElimination productElimination promote_hyp multiplyEquality applyEquality applyLambdaEquality baseApply closedConclusion

Latex:
\mforall{}[v:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[n:\mBbbN{}].    (v\^{}n  \mmember{}  \mBbbZ{}\msupminus{}\msupzero{})



Date html generated: 2017_04_14-AM-09_22_12
Last ObjectModification: 2017_02_27-PM-03_57_47

Theory : int_2


Home Index