Nuprl Lemma : p-digits_wf

[p:ℕ+]. ∀[a:p-adics(p)].  (p-digits(p;a) ∈ ℕ+ ⟶ ℕp)


Proof




Definitions occuring in Statement :  p-digits: p-digits(p;a) p-adics: p-adics(p) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-digits: p-digits(p;a) nat_plus: +
Lemmas referenced :  p-digit_wf nat_plus_wf p-adics_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality because_Cache

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].    (p-digits(p;a)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbN{}p)



Date html generated: 2018_05_21-PM-03_21_33
Last ObjectModification: 2018_05_19-AM-08_18_35

Theory : rings_1


Home Index