Nuprl Lemma : p-digits_wf
∀[p:ℕ+]. ∀[a:p-adics(p)].  (p-digits(p;a) ∈ ℕ+ ⟶ ℕp)
Proof
Definitions occuring in Statement : 
p-digits: p-digits(p;a)
, 
p-adics: p-adics(p)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-digits: p-digits(p;a)
, 
nat_plus: ℕ+
Lemmas referenced : 
p-digit_wf, 
nat_plus_wf, 
p-adics_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].    (p-digits(p;a)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbN{}p)
Date html generated:
2018_05_21-PM-03_21_33
Last ObjectModification:
2018_05_19-AM-08_18_35
Theory : rings_1
Home
Index