Step
*
1
of Lemma
p-inv_wf
.....assertion.....
1. p : {p:{2...}| prime(p)}
2. a : {a:p-adics(p)| ¬((a 1) = 0 ∈ ℤ)}
⊢ p-inv(p;a) = (λn.(TERMOF{p-adic-inv-lemma:o, \\v:l} p a n)) ∈ (n:ℕ+ ⟶ (∃c:ℕp^n [((c * (a n)) ≡ 1 mod p^n)]))
BY
{ ((FunExt THENA Auto)
THEN RepUR ``p-inv`` 0
THEN RepeatFor 2 ((CallByValueReduce 0⋅ THENA Auto))
THEN Symmetry
THEN (ShowSqEq
THENL [(RW (AddrC [2] (TagC (mk_tag_term 1))) 0 THEN Reduce 0⋅ THEN Subst' sign(a n) ~ 1 0 THEN Auto); Auto]
)
THEN D -2
THEN GenConclTerm ⌜a n⌝⋅
THEN Auto
THEN Unfold `sign` 0
THEN AutoSplit) }
Latex:
Latex:
.....assertion.....
1. p : \{p:\{2...\}| prime(p)\}
2. a : \{a:p-adics(p)| \mneg{}((a 1) = 0)\}
\mvdash{} p-inv(p;a) = (\mlambda{}n.(TERMOF\{p-adic-inv-lemma:o, \mbackslash{}\mbackslash{}v:l\} p a n))
By
Latex:
((FunExt THENA Auto)
THEN RepUR ``p-inv`` 0
THEN RepeatFor 2 ((CallByValueReduce 0\mcdot{} THENA Auto))
THEN Symmetry
THEN (ShowSqEq
THENL [(RW (AddrC [2] (TagC (mk\_tag\_term 1))) 0
THEN Reduce
0\mcdot{}
THEN Subst' sign(a n) \msim{} 1 0
THEN Auto)
; Auto]
)
THEN D -2
THEN GenConclTerm \mkleeneopen{}a n\mkleeneclose{}\mcdot{}
THEN Auto
THEN Unfold `sign` 0
THEN AutoSplit)
Home
Index