Nuprl Lemma : p-inv_wf

p:{p:{2...}| prime(p)} . ∀a:p-units(p).  (p-inv(p;a) ∈ {b:p-adics(p)| 1(p) ∈ p-adics(p)} )


Proof




Definitions occuring in Statement :  p-inv: p-inv(p;a) p-units: p-units(p) p-int: k(p) p-mul: y p-adics: p-adics(p) prime: prime(a) int_upper: {i...} all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  p-units: p-units(p) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_upper: {i...} not: ¬A implies:  Q p-adics: p-adics(p) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] nat: le: A ≤ B false: False so_apply: x[s] uimplies: supposing a prop: p-inv: p-inv(p;a) has-value: (a)↓ decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top p-adic-inv-lemma sign: sign(x) lelt: i ≤ j < k bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q sq_exists: x:A [B[x]] sq_stable: SqStable(P) eqmod: a ≡ mod m divides: a ge: i ≥  int_nzero: -o nequal: a ≠ b ∈  cand: c∧ B rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-mul: y
Lemmas referenced :  p-adics_wf istype-int istype-less_than set_subtype_base lelt_wf exp_wf2 istype-false istype-le int_subtype_base istype-void istype-int_upper prime_wf value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type exp_wf_nat_plus nat_plus_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt int_seg_wf p-adic-inv-lemma subtype_base_sq le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf int_seg_properties nat_plus_subtype_nat intformeq_wf int_formula_prop_eq_lemma exp-positive absval_pos subtype_rel_self int_upper_wf not_wf equal-wf-base sq_exists_wf eqmod_wf itermAdd_wf int_term_value_add_lemma sq_stable__eqmod p-adic-property equal_wf squash_wf true_wf istype-universe mul_assoc iff_weakening_equal exp_add exp1 int_seg_subtype_nat eqmod_functionality_wrt_eqmod multiply_functionality_wrt_eqmod eqmod_weakening nat_properties decidable__equal_int itermMultiply_wf itermSubtract_wf int_term_value_mul_lemma int_term_value_subtract_lemma subtract_wf divides_wf divides_subtract divides_product exp_step divisor_bound subtype_rel_set nat_wf upper_subtype_nat prime-power-divides-product sq_stable_from_decidable decidable__prime mul_cancel_in_eq exp_wf3 int_nzero_wf subtype_rel_sets_simple nequal_wf itermMinus_wf int_term_value_minus_lemma p-mul_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel p-int_wf p-adics-equal p-reduce_wf mul-commutes p-reduce-eqmod
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut sqequalHypSubstitution hypothesis setIsType universeIsType introduction extract_by_obid isectElimination thin setElimination rename hypothesisEquality functionIsType equalityIstype applyEquality dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation imageMemberEquality baseClosed intEquality lambdaEquality_alt independent_isectElimination sqequalBase equalitySymmetry functionExtensionality callbyvalueReduce dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination because_Cache instantiate cumulativity inhabitedIsType productElimination equalityElimination equalityTransitivity promote_hyp applyLambdaEquality imageElimination functionEquality setEquality multiplyEquality addEquality universeEquality baseApply closedConclusion inrFormation_alt inlFormation_alt minusEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}a:p-units(p).    (p-inv(p;a)  \mmember{}  \{b:p-adics(p)|  a  *  b  =  1(p)\}  )



Date html generated: 2019_10_15-AM-10_35_07
Last ObjectModification: 2019_06_24-PM-00_57_15

Theory : rings_1


Home Index