Nuprl Lemma : absval_pos

[i:ℕ]. (|i| i ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) le: A ≤ B
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot sq_stable_from_decidable le_wf decidable__le not-lt-2 add_functionality_wrt_le add-zero le-add-cancel-alt nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis minusEquality natural_numberEquality lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality

Latex:
\mforall{}[i:\mBbbN{}].  (|i|  =  i)



Date html generated: 2017_04_14-AM-07_16_45
Last ObjectModification: 2017_02_27-PM-02_51_36

Theory : arithmetic


Home Index