Nuprl Lemma : divisor_bound

[a:ℕ]. ∀[b:ℕ+].  a ≤ supposing b


Proof




Definitions occuring in Statement :  divides: a nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat_plus: + nat: prop: exists: x:A. B[x] divides: a top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥ 
Lemmas referenced :  less_than'_wf divides_wf nat_plus_wf nat_wf mul_preserves_le intformand_wf itermMultiply_wf intformeq_wf intformless_wf int_formula_prop_and_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_less_lemma nat_plus_properties nat_properties decidable__or le_wf decidable__le satisfiable-full-omega-tt intformnot_wf intformor_wf intformle_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_or_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  isect_memberEquality voidElimination computeAll voidEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination independent_functionElimination natural_numberEquality lemma_by_obid independent_pairFormation

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\mBbbN{}\msupplus{}].    a  \mleq{}  b  supposing  a  |  b



Date html generated: 2019_06_20-PM-02_20_21
Last ObjectModification: 2018_09_26-PM-05_45_50

Theory : num_thy_1


Home Index