Nuprl Lemma : divisor_bound
∀[a:ℕ]. ∀[b:ℕ+].  a ≤ b supposing a | b
Proof
Definitions occuring in Statement : 
divides: b | a
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
divides: b | a
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
Lemmas referenced : 
less_than'_wf, 
divides_wf, 
nat_plus_wf, 
nat_wf, 
mul_preserves_le, 
intformand_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
nat_plus_properties, 
nat_properties, 
decidable__or, 
le_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformor_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
isect_memberEquality, 
voidElimination, 
computeAll, 
voidEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
independent_functionElimination, 
natural_numberEquality, 
lemma_by_obid, 
independent_pairFormation
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\mBbbN{}\msupplus{}].    a  \mleq{}  b  supposing  a  |  b
Date html generated:
2019_06_20-PM-02_20_21
Last ObjectModification:
2018_09_26-PM-05_45_50
Theory : num_thy_1
Home
Index