Nuprl Lemma : decidable__prime

n:ℕDec(prime(n))


Proof




Definitions occuring in Statement :  prime: prime(a) nat: decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] nat: uimplies: supposing a prop: rev_implies:  Q atomic: atomic(a) cand: c∧ B
Lemmas referenced :  nat_wf prime_imp_atomic prime_wf atomic_imp_prime atomic_wf decidable_functionality not_wf equal_wf assoced_wf decidable__and2 and_wf reducible_wf decidable__not decidable__equal_int decidable__assoced decidable__reducible
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis independent_pairFormation sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality independent_isectElimination dependent_functionElimination independent_functionElimination productElimination intEquality natural_numberEquality because_Cache isect_memberEquality

Latex:
\mforall{}n:\mBbbN{}.  Dec(prime(n))



Date html generated: 2016_05_14-PM-04_21_23
Last ObjectModification: 2015_12_26-PM-08_17_30

Theory : num_thy_1


Home Index