Nuprl Lemma : atomic_imp_prime
∀a:ℤ. prime(a) supposing atomic(a)
Proof
Definitions occuring in Statement : 
prime: prime(a), 
atomic: atomic(a), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
atomic: atomic(a), 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
guard: {T}, 
prime: prime(a), 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
gcd_p: GCD(a;b;y), 
coprime: CoPrime(a,b), 
cand: A c∧ B, 
assoced: a ~ b
Lemmas referenced : 
int_subtype_base, 
assoced_wf, 
reducible_wf, 
atomic_char, 
atomic_wf, 
istype-int, 
divides_wf, 
gcd_wf, 
gcd_is_divisor_1, 
coprime_prod, 
coprime_elim_a, 
divides_reflexivity, 
gcd_is_divisor_2, 
divides_functionality_wrt_assoced, 
assoced_inversion, 
assoced_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
applyEquality, 
extract_by_obid, 
hypothesis, 
natural_numberEquality, 
Error :universeIsType, 
isectElimination, 
rename, 
independent_functionElimination, 
independent_pairFormation, 
multiplyEquality, 
because_Cache, 
unionElimination, 
Error :inlFormation_alt, 
independent_isectElimination, 
Error :inrFormation_alt
Latex:
\mforall{}a:\mBbbZ{}.  prime(a)  supposing  atomic(a)
Date html generated:
2019_06_20-PM-02_23_56
Last ObjectModification:
2018_10_03-AM-00_12_48
Theory : num_thy_1
Home
Index