Nuprl Lemma : coprime_prod
∀a,b1,b2:ℤ.  (CoPrime(a,b1) 
⇒ CoPrime(a,b2) 
⇒ CoPrime(a,b1 * b2))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
Lemmas referenced : 
coprime_wf, 
istype-int, 
coprime_bezout_id, 
istype-void, 
add-associates, 
minus-one-mul, 
add-commutes, 
add-swap, 
add-mul-special, 
zero-mul, 
zero-add, 
add_mono_wrt_eq, 
subtract_wf, 
int_subtype_base, 
mul-distributes, 
mul-associates, 
mul-distributes-right, 
mul-swap, 
mul-commutes, 
one-mul, 
mul_functionality_wrt_eq, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
multiplyEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
Error :dependent_pairFormation_alt, 
addEquality, 
Error :equalityIsType4, 
applyEquality, 
Error :productIsType, 
unionElimination, 
approximateComputation, 
Error :lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation
Latex:
\mforall{}a,b1,b2:\mBbbZ{}.    (CoPrime(a,b1)  {}\mRightarrow{}  CoPrime(a,b2)  {}\mRightarrow{}  CoPrime(a,b1  *  b2))
Date html generated:
2019_06_20-PM-02_23_44
Last ObjectModification:
2018_10_03-AM-00_12_51
Theory : num_thy_1
Home
Index