Nuprl Lemma : coprime_prod

a,b1,b2:ℤ.  (CoPrime(a,b1)  CoPrime(a,b2)  CoPrime(a,b1 b2))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] top: Top uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B subtract: m decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False
Lemmas referenced :  coprime_wf istype-int coprime_bezout_id istype-void add-associates minus-one-mul add-commutes add-swap add-mul-special zero-mul zero-add add_mono_wrt_eq subtract_wf int_subtype_base mul-distributes mul-associates mul-distributes-right mul-swap mul-commutes one-mul mul_functionality_wrt_eq decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination productElimination independent_functionElimination because_Cache multiplyEquality rename equalityTransitivity equalitySymmetry minusEquality Error :isect_memberEquality_alt,  voidElimination natural_numberEquality sqequalRule independent_isectElimination Error :dependent_pairFormation_alt,  addEquality Error :equalityIsType4,  applyEquality Error :productIsType,  unionElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality independent_pairFormation

Latex:
\mforall{}a,b1,b2:\mBbbZ{}.    (CoPrime(a,b1)  {}\mRightarrow{}  CoPrime(a,b2)  {}\mRightarrow{}  CoPrime(a,b1  *  b2))



Date html generated: 2019_06_20-PM-02_23_44
Last ObjectModification: 2018_10_03-AM-00_12_51

Theory : num_thy_1


Home Index