Nuprl Lemma : divides_subtract
∀x,y,z:ℤ. ((x | y)
⇒ (x | z)
⇒ (x | (y - z)))
Proof
Definitions occuring in Statement :
divides: b | a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtract: n - m
,
int: ℤ
Definitions unfolded in proof :
divides: b | a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
equal_wf,
int_formula_prop_wf,
int_term_value_mul_lemma,
int_term_value_var_lemma,
int_term_value_subtract_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermMultiply_wf,
itermVar_wf,
itermSubtract_wf,
intformeq_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__equal_int,
subtract_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation,
cut,
lemma_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
dependent_functionElimination,
because_Cache,
unionElimination,
natural_numberEquality,
independent_isectElimination,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
multiplyEquality
Latex:
\mforall{}x,y,z:\mBbbZ{}. ((x | y) {}\mRightarrow{} (x | z) {}\mRightarrow{} (x | (y - z)))
Date html generated:
2016_05_14-PM-04_16_28
Last ObjectModification:
2016_01_14-PM-11_42_28
Theory : num_thy_1
Home
Index