Step
*
of Lemma
p-unitize_wf
∀p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.
  ((¬((a n) = 0 ∈ ℤ)) 
⇒ (p-unitize(p;a;n) ∈ k:ℕn + 1 × {b:p-units(p)| p^k(p) * b = a ∈ p-adics(p)} ))
BY
{ ((Auto THEN Unfold `p-unitize` 0) THEN (Decide ⌜greatest-p-zero(n;a) = 0 ∈ ℤ⌝⋅ THENA Auto)) }
1
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. ¬((a n) = 0 ∈ ℤ)
5. greatest-p-zero(n;a) = 0 ∈ ℤ
⊢ eval k = greatest-p-zero(n;a) in
  <k, if k=0 then a else p-shift(p;a;k)> ∈ k:ℕn + 1 × {b:p-units(p)| p^k(p) * b = a ∈ p-adics(p)} 
2
1. p : ℕ+
2. a : p-adics(p)
3. n : ℕ+
4. ¬((a n) = 0 ∈ ℤ)
5. ¬(greatest-p-zero(n;a) = 0 ∈ ℤ)
⊢ eval k = greatest-p-zero(n;a) in
  <k, if k=0 then a else p-shift(p;a;k)> ∈ k:ℕn + 1 × {b:p-units(p)| p^k(p) * b = a ∈ p-adics(p)} 
Latex:
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((\mneg{}((a  n)  =  0))  {}\mRightarrow{}  (p-unitize(p;a;n)  \mmember{}  k:\mBbbN{}n  +  1  \mtimes{}  \{b:p-units(p)|  p\^{}k(p)  *  b  =  a\}  ))
By
Latex:
((Auto  THEN  Unfold  `p-unitize`  0)  THEN  (Decide  \mkleeneopen{}greatest-p-zero(n;a)  =  0\mkleeneclose{}\mcdot{}  THENA  Auto))
Home
Index