Nuprl Lemma : p-unitize_wf
∀p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.
  ((¬((a n) = 0 ∈ ℤ)) 
⇒ (p-unitize(p;a;n) ∈ k:ℕn + 1 × {b:p-units(p)| p^k(p) * b = a ∈ p-adics(p)} ))
Proof
Definitions occuring in Statement : 
p-unitize: p-unitize(p;a;n)
, 
p-units: p-units(p)
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-adics: p-adics(p)
, 
exp: i^n
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
p-unitize: p-unitize(p;a;n)
, 
uall: ∀[x:A]. B[x]
, 
p-adics: p-adics(p)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
p-units: p-units(p)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
p-int: k(p)
, 
p-mul: x * y
, 
p-reduce: i mod(p^n)
, 
int_upper: {i...}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
Lemmas referenced : 
decidable__equal_int, 
greatest-p-zero_wf, 
int_seg_wf, 
exp_wf2, 
nat_plus_wf, 
nat_wf, 
not_wf, 
equal-wf-T-base, 
nat_plus_subtype_nat, 
p-adics_wf, 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
exp0_lemma, 
equal_wf, 
p-mul_wf, 
p-int_wf, 
p-units_wf, 
int_seg_subtype_nat, 
less_than_wf, 
le_wf, 
greatest-p-zero-property, 
p-adics-equal, 
modulus_wf_int_mod, 
exp_wf_nat_plus, 
int-subtype-int_mod, 
one-mul, 
p-adic-property, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
eqmod_functionality_wrt_eqmod, 
eqmod_transitivity, 
mod-eqmod, 
multiply_functionality_wrt_eqmod, 
eqmod_weakening, 
value-type-has-value, 
set-value-type, 
int-value-type, 
le_weakening2, 
int_seg_properties, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
shift-greatest-p-zero-unit, 
p-shift-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
unionElimination, 
intEquality, 
baseClosed, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_pairEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
imageMemberEquality, 
productElimination, 
multiplyEquality, 
callbyvalueReduce, 
applyLambdaEquality
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((\mneg{}((a  n)  =  0))  {}\mRightarrow{}  (p-unitize(p;a;n)  \mmember{}  k:\mBbbN{}n  +  1  \mtimes{}  \{b:p-units(p)|  p\^{}k(p)  *  b  =  a\}  ))
Date html generated:
2018_05_21-PM-03_22_30
Last ObjectModification:
2018_05_19-AM-08_20_53
Theory : rings_1
Home
Index