Nuprl Lemma : p-unitize_wf

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.
  ((¬((a n) 0 ∈ ℤ))  (p-unitize(p;a;n) ∈ k:ℕ1 × {b:p-units(p)| p^k(p) a ∈ p-adics(p)} ))


Proof




Definitions occuring in Statement :  p-unitize: p-unitize(p;a;n) p-units: p-units(p) p-int: k(p) p-mul: y p-adics: p-adics(p) exp: i^n int_seg: {i..j-} nat_plus: + all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a product: x:A × B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T p-unitize: p-unitize(p;a;n) uall: [x:A]. B[x] p-adics: p-adics(p) subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + nat: decidable: Dec(P) or: P ∨ Q prop: uimplies: supposing a sq_type: SQType(T) guard: {T} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top p-units: p-units(p) less_than: a < b squash: T true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-mul: y p-reduce: mod(p^n) int_upper: {i...} iff: ⇐⇒ Q rev_implies:  Q has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥ 
Lemmas referenced :  decidable__equal_int greatest-p-zero_wf int_seg_wf exp_wf2 nat_plus_wf nat_wf not_wf equal-wf-T-base nat_plus_subtype_nat p-adics_wf subtype_base_sq int_subtype_base false_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf exp0_lemma equal_wf p-mul_wf p-int_wf p-units_wf int_seg_subtype_nat less_than_wf le_wf greatest-p-zero-property p-adics-equal modulus_wf_int_mod exp_wf_nat_plus int-subtype-int_mod one-mul p-adic-property decidable__le intformle_wf int_formula_prop_le_lemma eqmod_functionality_wrt_eqmod eqmod_transitivity mod-eqmod multiply_functionality_wrt_eqmod eqmod_weakening value-type-has-value set-value-type int-value-type le_weakening2 int_seg_properties nat_properties intformeq_wf int_formula_prop_eq_lemma shift-greatest-p-zero-unit p-shift-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename functionExtensionality applyEquality hypothesisEquality hypothesis lambdaEquality natural_numberEquality because_Cache sqequalRule unionElimination intEquality baseClosed instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination dependent_pairEquality dependent_set_memberEquality independent_pairFormation addEquality approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality setEquality imageMemberEquality productElimination multiplyEquality callbyvalueReduce applyLambdaEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((\mneg{}((a  n)  =  0))  {}\mRightarrow{}  (p-unitize(p;a;n)  \mmember{}  k:\mBbbN{}n  +  1  \mtimes{}  \{b:p-units(p)|  p\^{}k(p)  *  b  =  a\}  ))



Date html generated: 2018_05_21-PM-03_22_30
Last ObjectModification: 2018_05_19-AM-08_20_53

Theory : rings_1


Home Index