Nuprl Lemma : shift-greatest-p-zero-unit

p:ℕ+. ∀a:p-adics(p). ∀n:ℕ+.
  ((¬((a n) 0 ∈ ℤ))  0 < greatest-p-zero(n;a)  (p-shift(p;a;greatest-p-zero(n;a)) ∈ p-units(p)))


Proof




Definitions occuring in Statement :  greatest-p-zero: greatest-p-zero(n;a) p-shift: p-shift(p;a;k) p-units: p-units(p) p-adics: p-adics(p) nat_plus: + less_than: a < b all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T p-units: p-units(p) and: P ∧ Q uall: [x:A]. B[x] uimplies: supposing a int_seg: {i..j-} p-adics: p-adics(p) subtype_rel: A ⊆B lelt: i ≤ j < k nat_plus: + nat: decidable: Dec(P) or: P ∨ Q le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b squash: T less_than': less_than'(a;b) true: True label: ...$L... t guard: {T} iff: ⇐⇒ Q rev_implies:  Q p-shift: p-shift(p;a;k) uiff: uiff(P;Q) int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  sq_type: SQType(T) int_upper: {i...} eqmod: a ≡ mod m divides: a
Lemmas referenced :  greatest-p-zero-property p-shift_wf greatest-p-zero_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf not_wf equal-wf-T-base less_than_wf int_seg_wf exp_wf2 false_wf nat_plus_wf p-adics_wf nat_wf equal_wf squash_wf true_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_self iff_weakening_equal not-lt-2 less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes zero-add le-add-cancel exp-positive div_rem_sum exp_wf3 subtype_rel_sets nequal_wf equal-wf-base int_subtype_base subtype_base_sq int_seg_properties add-is-int-iff itermMultiply_wf int_term_value_mul_lemma rem_bounds_1 int_seg_subtype_nat nat_plus_subtype_nat p-adic-property set_subtype_base eqmod_wf mul_preserves_lt less_than_transitivity2 itermSubtract_wf int_term_value_subtract_lemma mul_preserves_le exp_wf4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache dependent_set_memberEquality productElimination isectElimination independent_isectElimination hypothesis setElimination rename applyEquality sqequalRule independent_pairFormation natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality imageMemberEquality baseClosed functionExtensionality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis instantiate applyLambdaEquality setEquality cumulativity pointwiseFunctionality promote_hyp baseApply closedConclusion divideEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}a:p-adics(p).  \mforall{}n:\mBbbN{}\msupplus{}.
    ((\mneg{}((a  n)  =  0))  {}\mRightarrow{}  0  <  greatest-p-zero(n;a)  {}\mRightarrow{}  (p-shift(p;a;greatest-p-zero(n;a))  \mmember{}  p-units(p)))



Date html generated: 2018_05_21-PM-03_22_20
Last ObjectModification: 2018_05_19-AM-08_20_09

Theory : rings_1


Home Index