Nuprl Lemma : p-shift_wf

[p:ℕ+]. ∀[a:p-adics(p)]. ∀[k:ℕ+].  p-shift(p;a;k) ∈ p-adics(p) supposing (a k) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  p-shift: p-shift(p;a;k) p-adics: p-adics(p) nat_plus: + uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: p-adics: p-adics(p) subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + p-shift: p-shift(p;a;k) all: x:A. B[x] int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q sq_type: SQType(T) guard: {T} eqmod: a ≡ mod m divides: a nat: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) lelt: i ≤ j < k int_nzero: -o nequal: a ≠ b ∈  less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q subtract: m le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  equal-wf-T-base int_seg_wf exp_wf2 nat_plus_subtype_nat nat_plus_wf p-adics_wf p-adic-property nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf intformless_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf subtype_base_sq int_subtype_base set_subtype_base lelt_wf decidable__equal_int decidable__lt less_than_wf multiply-is-int-iff subtract-is-int-iff intformeq_wf itermMultiply_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_subtract_lemma false_wf exp_wf_nat_plus int_seg_properties div-cancel2 exp_wf3 subtype_rel_sets nequal_wf equal-wf-base equal_wf exp_add mul_cancel_in_le mul_cancel_in_lt subtract_wf all_wf eqmod_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel exp_step mul_nzero squash_wf true_wf add_functionality_wrt_eq subtype_rel_self iff_weakening_equal div-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin intEquality applyEquality setElimination rename hypothesisEquality lambdaEquality natural_numberEquality baseClosed isect_memberEquality because_Cache functionExtensionality dependent_functionElimination dependent_set_memberEquality addEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation instantiate cumulativity productElimination universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion applyLambdaEquality setEquality lambdaFormation imageElimination multiplyEquality minusEquality divideEquality imageMemberEquality

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[a:p-adics(p)].  \mforall{}[k:\mBbbN{}\msupplus{}].    p-shift(p;a;k)  \mmember{}  p-adics(p)  supposing  (a  k)  =  0



Date html generated: 2018_05_21-PM-03_21_46
Last ObjectModification: 2018_05_19-AM-08_20_29

Theory : rings_1


Home Index