Nuprl Lemma : mul_nzero

[a,b:ℤ-o].  b ≠ 0


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] nequal: a ≠ b ∈  multiply: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈  not: ¬A implies:  Q false: False int_nzero: -o uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  int_entire_a int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal-wf-T-base int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality baseClosed because_Cache independent_functionElimination multiplyEquality

Latex:
\mforall{}[a,b:\mBbbZ{}\msupminus{}\msupzero{}].    a  *  b  \mneq{}  0



Date html generated: 2017_04_17-AM-09_45_16
Last ObjectModification: 2017_02_27-PM-05_39_54

Theory : num_thy_1


Home Index