Nuprl Lemma : mul_nzero
∀[a,b:ℤ-o].  a * b ≠ 0
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
int_entire_a, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
multiplyEquality
Latex:
\mforall{}[a,b:\mBbbZ{}\msupminus{}\msupzero{}].    a  *  b  \mneq{}  0
Date html generated:
2017_04_17-AM-09_45_16
Last ObjectModification:
2017_02_27-PM-05_39_54
Theory : num_thy_1
Home
Index