Nuprl Lemma : mul_preserves_lt
∀[a,b:ℤ]. ∀[n:ℕ+].  n * a < n * b supposing a < b
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
nat_plus: ℕ+, 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
squash: ↓T, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
true: True
Lemmas referenced : 
less-iff-positive, 
less_than_wf, 
member-less_than, 
nat_plus_wf, 
mul_positive, 
subtract_wf, 
squash_wf, 
true_wf, 
minus-one-mul, 
mul-commutes, 
add-commutes, 
minus-one-mul-top, 
mul-distributes, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
addEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    n  *  a  <  n  *  b  supposing  a  <  b
Date html generated:
2019_06_20-AM-11_23_22
Last ObjectModification:
2019_01_27-PM-03_10_12
Theory : arithmetic
Home
Index