Nuprl Lemma : pa-int_wf
∀[p:{2...}]. ∀[k:ℤ].  (k(p) ∈ padic(p))
Proof
Definitions occuring in Statement : 
pa-int: k(p), 
padic: padic(p), 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pa-int: k(p), 
padic: padic(p), 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
nat_plus: ℕ+, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt
Lemmas referenced : 
false_wf, 
le_wf, 
p-int_wf, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
p-adics_wf, 
ifthenelse_wf, 
eq_int_wf, 
p-units_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
instantiate, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[k:\mBbbZ{}].    (k(p)  \mmember{}  padic(p))
Date html generated:
2018_05_21-PM-03_26_46
Last ObjectModification:
2018_05_19-AM-08_24_03
Theory : rings_1
Home
Index